This is an H1

This is an H2

This is an H3

This is an H4

This is an H5

The point of reference-style links is not that they’re easier to write. The point is that with reference-style links, your document source is vastly more readable. Compare the above examples: using reference-style links, the paragraph itself is only 81 characters long; with inline-style links, it’s 176 characters; and as raw HTML, it’s 234 characters. In the raw HTML, there’s more markup than there is text.


This is a blockquote with two paragraphs. Lorem ipsum dolor sit amet,
consectetuer adipiscing elit. Aliquam hendrerit mi posuere lectus.
Vestibulum enim wisi, viverra nec, fringilla in, laoreet vitae, risus.

Donec sit amet nisl. Aliquam semper ipsum sit amet velit. Suspendisse
id sem consectetuer libero luctus adipiscing.


an example | an example | an example

这是删除线 (两个波浪线)

~这不会被渲染为删除线~ (单个波浪线)


<video poster="https://gw.alipayobjects.com/zos/kitchen/sLO%24gbrQtp/lobe-chat.webp" src="https://github.com/lobehub/lobe-chat/assets/28616219/f29475a3-f346-4196-a435-41a6373ab9e2"/>


  1. Bird
  2. McHale
  3. Parish
    1. Bird
    2. McHale
      1. Parish

  • Red
  • Green
  • Blue
    • Red
    • Green
      • Blue

This is an example inline link.

http://example.com/

titletitletitle
contentcontentcontent
$ pnpm install
javascript
import { renderHook } from '@testing-library/react-hooks';
import { act } from 'react-dom/test-utils';
import { useDropNodeOnCanvas } from './useDropNodeOnCanvas';
Mermaid

Enter Chart Definition

Preview

decide

Keep

Edit Definition

Save Image and Code


以下是一段Markdown格式的LaTeX数学公式:

我是一个行内公式:E=mc2E=mc^2

我是一个独立的傅里叶公式:

f(x)=a0+n=1(ancos(nx)+bnsin(nx))f(x) = a_0 + \sum_{n=1}^{\infty} \left( a_n \cos(nx) + b_n \sin(nx) \right)

其中,带有积分符号的项:

a0=12πππf(x)dxa_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \, dx an=1πππf(x)cos(nx)dxforn1a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) \, dx \quad \text{for} \quad n \geq 1 bn=1πππf(x)sin(nx)dxforn1b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) \, dx \quad \text{for} \quad n \geq 1

我是一个带有分式、测试长度超长的泰勒公式:

f(x)=f(a)+f(a)(xa)+f(a)2!(xa)2+f(a)3!(xa)3++f(n)(a)n!(xa)n+Rn(x)\begin{equation} f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \frac{f'''(a)}{3!}(x - a)^3 + \cdots + \frac{f^{(n)}(a)}{n!}(x - a)^n + R_n(x) \end{equation}

我是上面公式的行内版本,看看我会不会折行:f(x)=f(a)+f(a)(xa)+f(a)2!(xa)2+f(a)3!(xa)3++f(n)(a)n!(xa)n+Rn(x)f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \frac{f'''(a)}{3!}(x - a)^3 + \cdots + \frac{f^{(n)}(a)}{n!}(x - a)^n + R_n(x)

我是一个带有上下标的公式:

q1q2=(w1w2v1Tv2,w1v2+w2v1+v1×v2)q_1 q_2 = (w_1 w_2 - \vec{v}_1^T \vec{v}_2, \, w_1 \vec{v}_2 + w_2 \vec{v}_1 + \vec{v}_1 \times \vec{v}_2)

我是一个带有 tag 的公式:

q=a+bi+cj+dk(1)q = a + bi + cj + dk \tag{1}

我是一个嵌套测试:

$1